Causal Models and Learning from Data
نویسندگان
چکیده
منابع مشابه
On Learning Causal Models from Relational Data
Many applications call for learning causal models from relational data. We investigate Relational Causal Models (RCM) under relational counterparts of adjacency-faithfulness and orientation-faithfulness, yielding a simple approach to identifying a subset of relational d-separation queries needed for determining the structure of an RCM using d-separation against an unrolled DAG representation of...
متن کاملLearning temporal probabilistic causal models from longitudinal data
Medical problems often require the analysis and interpretation of large collections of longitudinal data in terms of a structural model of the underlying physiological behavior. A suitable way to deal with this problem is to identify a temporal causal model that may effectively explain the patterns observed in the data. Here we will concentrate on probabilistic models, that provide a convenient...
متن کاملCausal models and learning from data: integrating causal modeling and statistical estimation.
The practice of epidemiology requires asking causal questions. Formal frameworks for causal inference developed over the past decades have the potential to improve the rigor of this process. However, the appropriate role for formal causal thinking in applied epidemiology remains a matter of debate. We argue that a formal causal framework can help in designing a statistical analysis that comes a...
متن کاملUsing Causal Models for Learning from Demonstration
Most learning from demonstration algorithms are implemented with a certain set of variables that are known to be important for the agent. The agent is hardcoded to use those variables for learning the task (or a set of parameters). In this work we try to understand the causal structure of a demonstrated task in order to find: which variables cause what other variables to change, and which varia...
متن کاملLearning Causal Bayesian networks from Literature Data
We propose two machine learning methods based on Bayesian networks to discover automatically real world causal relations from scientific publications. The first method assumes that the occurrence of causal mechanisms (and the corresponding entities) in the publications follows a transitive scheme, the second method assumes that the causal mechanisms occur independently. We perform an evaluation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Epidemiology
سال: 2014
ISSN: 1044-3983
DOI: 10.1097/ede.0000000000000078